Unit Cell and Space Group of SrPbO₃*

R. D. SHANNON

Central Research Department, Experimental Station, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898

Received September 29, 1970

SrPbO₃ is orthorhombic with $a = 5.8595 \pm 5$, $b = 5.9568 \pm 5$, and $c = 8.3253 \pm 6$ Å. The probable space group is *Pbnm*.

Weiss (1) and Hoppe and Blinne (2) first prepared SrPbO₃. Weiss stated that SrPbO₃ is probably an orthorhombic perovskite with space group Pbnm or $Pbn2_1(1)$. This finding is consistent with data on other A²⁺B⁴⁺O₃ orthorhombically distorted perovskites. Keester and White (3) have recently prepared polycrystalline SrPbO₃ and report diffractometer data which are presumably of higher precision than those of Weiss. They find similar cell dimensions but have chosen a different and incorrect space group because the resolution of their diffractometer was not sufficient to distinguish between Pnma: [(Okl) k+l=2n and (hkO) h=2n] and Pbnm: [(hOl) h + l = 2n and (Okl) k = 2n]. In this note, diffraction patterns taken on a Hägg-Guinier camera are used to show that the space group of SrPbO₃ should be *Pbnm*.

In a recent study, samples of single crystal and polycrystalline BaPbO₃ were prepared (4). BaPbO₃ was found to be an orthorhombically distorted perovskite with space group *Pbnm* or *Pbn2*₁ based on single crystal precession patterns and Guinier powder diffraction data. Space group *Pbnm* was assumed by analogy with other orthorhombic perovskites. Guinier data taken on SrPbO₃ prepared in a manner similar to that for BaPbO₃ did not indicate a unit cell and space group different from those of Weiss. Thus, we did not mention this work in our earlier publication. However, in light of Keester and White's results it seems worthwhile to report our data.

The sample was prepared by thoroughly mixing spectroscopic grade $SrCO_3$ and reagent grade PbO_2 , pelletizing, and heating in a Pt foil envelope

*Contribution No. 1743.

TABLE I

POWDER DIFFRACTION DATA FOR SrPbO3

h k l	d_{calcd}	$d_{\rm obsd}$	$I_{ m obsd}$
110	4.1773	4.1835	90
002	4.1626	4.1635	90
111	3.7336	3.7336	30
020	2.9784	2.9788	95
112	2.9486	2.9453	100
200	2.9297	2.9312	100
021	2.8044	2.8047	15
210	2.6290	2.6287	5
121	2.5296	2,5297	5
103	2.5080	2,5073	25
211	2.5070∫	2.3073	25
022	2.4222	2.4221	50
202	2.3958	2.3957	50
113	2.3115	2.3117	20
122	2.2385	2.2382	10
220	2.0886	2.0880	95
004	2.0813	2.0818	95
023	2.0304	2.0303	20
221	2.0259	2.0258	25
213	1.9085	1,9088	5
130	1.8806	1.8805	70
222	1.8668	1.8665	85
114	1.8629	1.8633	85
310	1.8559	1.8560	50
131	1.8343	1.8344	35
311	1.8115	1.8117	10
132	1.7138	1.7136	95
024	1.7060	1.7061	90
204	1.6967	1.6970	95
312	1.6951	1.6942	95
223	1.6688	1.6688	5
133	1.5568	1.5569	15

h k l	$d_{\rm cacid}$	d_{obsd}	$I_{ m obsd}$
040	1.4892	1.4892	50
224	1.4743	1.4742	95
041 400	1.4660	1.4649	60
042 411	1.4022 } 1.4022 ∫	1.4022	40
134	1.3953	1.3954	60
330	1.3924	1.3925	35
006	1.3875	1.3874	15
314	1.3852	1.3852	45
402	1.3818	1.3818	30
331	1.3733	1.3733	10
240	1.3275	1.3275	60
332	1.3205	1.3204	85
116	1.3168	1.3168	90
420	1.3145	1.3146	75
043 241	1.3122 1.3110 }	1.3111	20
225	1.3020	1.3020	5

TABLE I—continued

for 24 hr at 900°C. The product was reground, repelletized, and reheated under the same conditions. Table I shows an X-ray diffraction pattern

taken on a Hägg-Guinier camera according to the procedure described earlier (4). The pattern has been slightly overexposed to bring out weak lines. The increased resolution characteristic of the Guinier patterns makes indexing considerably more reliable than in the diffractometer pattern of Keester and White. Although the space group is not unequivocally determined by this pattern, the indexing is consistent with the space group *Pbnm* or *Pbn2*₁ as indicated by Weiss. The cell dimensions obtained from least-squares analysis of the data in space group *Pbnm* are: $a = 5.8595 \pm 5$, $b = 5.9568 \pm 5$, and $c = 8.3253 \pm 6$ Å.

Acknowledgment

The author gratefully acknowledges the assistance of Dr. J. F. Whitney and Miss M. S. Licis in obtaining the X-ray data.

References

- 1. R. WEISS, C.R. Acad. Sci. Ser. 246, 196 (1958).
- 2. R. HOPPE AND K. BLINNE, Z. Anorg. Allg. Chem. 293, 251 (1958).
- 3. K. L. KEESTER AND W. B. WHITE, J. Solid State Chem. 2, 68 (1970).
- 4. R. D. SHANNON AND P. E. BIERSTEDT, J. Amer. Ceram. Soc., 53, 635 (1970).